

I S S P 21

**21st IUPAC International Symposium on Solubility
Phenomena and Related Equilibrium Processes
(ISSP21)**

Book of Abstracts

Novi Sad, Serbia, September 9 – 13, 2024

Title of the publication: 21st IUPAC International Symposium on Solubility Phenomena and Related Equilibrium Processes (ISSP21)
Book of Abstracts

Editors: Prof. Dr. Slobodan Gadžurić
Prof. Dr. Sanja Belić
MSc Nikolet Cako Baganj

Published by: University of Novi Sad, Faculty of Sciences
Trg Dositeja Obradovića 3, Novi Sad, Serbia

For publisher: Prof. Dr. Milica Pavkov Hrvojević, dean
University of Novi Sad, Faculty of Sciences

Printed by: Electronic material

Published at: <https://issp2024.pmf.uns.ac.rs/>

СИР - Каталогизација у публикацији
Библиотеке Матице српске, Нови Сад

54(048.3)(082)(0.034.4)

INTERNATIONAL Symposium on Solubility Phenomena and Related Equilibrium Processes (21 ; 2024 ; Novi Sad)

Book of Abstracts [Elektronski izvor] / 21st IUPAC International Symposium on Solubility Phenomena and Related Equilibrium Processes, Novi Sad, Serbia, September 9 – 13, 2024 ; [editors] Slobodan Gadžurić, Sanja Belić, Nikolet Cako Baganj. - Novi Sad: Prirodno-matematički fakultet, 2024

Sistemski zahtevi nisu navedeni. - Način pristupa (URL): <https://issp2024.pmf.uns.ac.rs/> - Nasl. sa naslovnog ekrana dana 2. 9. 2024.

ISBN 978-86-7031-667-6

a) Хемија -- Апстракти -- Зборници

COBISS.SR-ID 151303177

International Advisory Board

1. Dr. Marcus Altmeier, Karlsruhe Institute of Technology, Germany
2. Dr. Ala Bazyleva, National Institute of Standards and Technology, USA
3. Dr. Magdalena Bendova, Institute of Chemical Process Fundamentals, Czech Republic
4. Dr. Alex De Visscher, Concordia University, Canada
5. Dr. Olga Ferreira, Instituto Politécnico de Bragança, Portugal
6. Dr. Montserrat Filella, University of Genève, Switzerland
7. Dr. Slobodan Gadzuric, University of Novi Sad, Serbia
8. Dr. Maria Gonzalez-Miquel, Universidad Politécnica de Madrid, Spain
9. Dr. Johan Jacquemin, Mohammed VI Polytechnic University, Morocco
10. Dr. Glenn Hefter, Murdoch University, Australia
11. Dr. Clara Magalhães, Chair of Program Committee, Portugal
12. Dr. Selva Pereda, Universidad Nacional del Sur, Argentina
13. Dr. Simão P. Pinho, Instituto Politécnico de Bragança, Portugal
14. Dr. David G. Shaw, University of Alaska, USA
15. Dr. Ana Soto, Universidade de Santiago de Compostela, Spain
16. Dr. Michael Steiger, Hamburg University, Germany
17. Dr. Wolfgang Voigt, Technische Universität Bergakademie Freiberg, Germany
18. Dr. Earle Waghorne, University College Dublin, Ireland (Conference Editor)
19. Dr. Dewen Zeng, Central South University, China

Local Organizing Committee

1. Dr. Slobodan Gadžurić, University of Novi Sad, Serbia – Chair
2. Dr. Sanja Belić, University of Novi Sad, Serbia
3. Dr. Jasmina Anočić, University of Novi Sad, Serbia
4. Dr. Milan Vraneš, University of Novi Sad, Serbia
5. Dr. Snežana Papović, University of Novi Sad, Serbia
6. Dr. Sanja Armaković, University of Novi Sad, Serbia
7. Dr. Suzana Apostolov, University of Novi Sad, Serbia
8. Dr. Jovana Panić, University of Novi Sad, Serbia
9. Dr. Sanja Mutić, University of Novi Sad, Serbia
10. Nikolet Cako Baganj, University of Novi Sad, Serbia
11. Teona Teodora Borović, University of Novi Sad, Serbia
12. Dajana Lazarević, Vinča Institute of nuclear Sciences, University of Belgrade, Serbia
13. Jelena Jovanović, Vinča Institute of nuclear Sciences, University of Belgrade, Serbia
14. Andrijana Bilić, University of Novi Sad, Serbia
15. Andrija Vukov, University of Novi Sad, Serbia

Green electrochemical sensor based on biochar for quantification of selected pesticides in aqueous solutions

Sanja Mutić, Jasmina Anočić, Tajana Simetić, Tamara Apostolović, Nina Đukanović and Jelena Beljin

Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Faculty of Sciences, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia

Presenting author email: sanja.mutic@dh.uns.ac.rs

The sustainability of materials for developing the electrochemical sensor is crucial in the framework of a circular economy due to the need for environmentally friendly and greener analytical chemistry. The decrease in the impact of waste on the environment requires innovative approaches for biochar (BC) production and usage [1-2]. As a highly porous and carbon-rich material, BC has a desirable role as a catalytic material to enhance the analytical performance of BC-based sensors [3]. There has been a growing interest in the development of rapid and cost-effective techniques for detecting pesticides using electrochemical sensors with the possibility of their modification with sustainable materials [4]. Since the modification of carbon paste electrode (CPE) could improve the selectivity and sensitivity of trace level analysis of various electroactive analytes [5], the application of CPE modified with BC was investigated.

A sensitive and selective analytical method is developed regarding the voltammetric determination of fungicides maneb (MAN) and mancozeb (MCZ) using BC-CPE in an aqueous solution. The experimental conditions including pH of the supporting electrolyte, amount of BC in CPE, and differential pulse adsorptive stripping (DPAdSV) parameters were optimized. Under the optimal working conditions, the determination of MAN and MCZ was performed by applying the following DPAdSV parameters: $E_{acc} = -0.2$ V, $t_{acc} = 90$ s, and $E_{acc} = -0.2$ V, $t_{acc} = 30$ s, respectively. The linear increase of pesticides oxidation peak was recognized in a concentration range from 0.049 – 1.84 $\mu\text{g mL}^{-1}$ MAN and 0.025 – 2.78 $\mu\text{g mL}^{-1}$ MCZ in an aqueous Britton-Robinson buffer pH 7.0 using CPE modified with 10% BC. The relative standard deviation of six replicate measurements of MAN and MCZ was 3.2% and 2.9%, respectively, indicating a good repeatability of the developed DPAdSV method. The evaluated limit of detection of 0.015 $\mu\text{g mL}^{-1}$ MAN and 0.0075 $\mu\text{g mL}^{-1}$ MCZ indicated that the modification of CPE by BC provides a fast and sensitive determination of target analytes in an aqueous solution.

By exploring innovative solutions, electrochemical sensors based on BCs could provide monitoring of aquatic environmental samples to the control detrimental effects of pesticide residues.

Acknowledgements: This research was supported by the Science Fund of the Republic of Serbia, #10810, Sustainable solutions in environmental chemistry: exploring biochar potential–EnviroChar.

- [1] P.S. Sfragano, S. Laschi, I. Palchetti, *Front. Chem.*, 2020, **8**, 644.
- [2] R.A.A. Muñoz, *Microchim. Acta*, 2023, **190**, 486.
- [3] J. Lee, K.-H. Kim, E.E. Kwon, *Renew. Sustain. Energy Rev.*, 2017, **77**, 70.
- [4] H. Zhu, M. Li, C. Cheng, Y. Han, S. Fu, R. Li, G. Cao, M. Liu, C. Cui, J. Liu, X. Yang, *Foods*, 2023, **12**, 4274.
- [5] H. Karimi-Maleh, F. Karimi, M. Rezapour, M. Bijad, M. Farsid, A. Beheshti, S.-A. Shahidi, *Curr. Anal. Chem.*, 2019, **15**, 410.